3.195 \(\int \frac{\log (c (a+b x^3)^p)}{d+e x} \, dx\)

Optimal. Leaf size=308 \[ -\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right )}{e}-\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{-1} \sqrt [3]{a} e+\sqrt [3]{b} d}\right )}{e}-\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right )}{e}+\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}-\frac{p \log (d+e x) \log \left (-\frac{e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right )}{e}-\frac{p \log (d+e x) \log \left (-\frac{e \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right )}{e}-\frac{p \log (d+e x) \log \left (\frac{\sqrt [3]{-1} e \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{-1} \sqrt [3]{a} e+\sqrt [3]{b} d}\right )}{e} \]

[Out]

-((p*Log[-((e*(a^(1/3) + b^(1/3)*x))/(b^(1/3)*d - a^(1/3)*e))]*Log[d + e*x])/e) - (p*Log[-((e*((-1)^(2/3)*a^(1
/3) + b^(1/3)*x))/(b^(1/3)*d - (-1)^(2/3)*a^(1/3)*e))]*Log[d + e*x])/e - (p*Log[((-1)^(1/3)*e*(a^(1/3) + (-1)^
(2/3)*b^(1/3)*x))/(b^(1/3)*d + (-1)^(1/3)*a^(1/3)*e)]*Log[d + e*x])/e + (Log[d + e*x]*Log[c*(a + b*x^3)^p])/e
- (p*PolyLog[2, (b^(1/3)*(d + e*x))/(b^(1/3)*d - a^(1/3)*e)])/e - (p*PolyLog[2, (b^(1/3)*(d + e*x))/(b^(1/3)*d
 + (-1)^(1/3)*a^(1/3)*e)])/e - (p*PolyLog[2, (b^(1/3)*(d + e*x))/(b^(1/3)*d - (-1)^(2/3)*a^(1/3)*e)])/e

________________________________________________________________________________________

Rubi [A]  time = 0.51683, antiderivative size = 308, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {2462, 260, 2416, 2394, 2393, 2391} \[ -\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right )}{e}-\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{-1} \sqrt [3]{a} e+\sqrt [3]{b} d}\right )}{e}-\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right )}{e}+\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}-\frac{p \log (d+e x) \log \left (-\frac{e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right )}{e}-\frac{p \log (d+e x) \log \left (-\frac{e \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right )}{e}-\frac{p \log (d+e x) \log \left (\frac{\sqrt [3]{-1} e \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{-1} \sqrt [3]{a} e+\sqrt [3]{b} d}\right )}{e} \]

Antiderivative was successfully verified.

[In]

Int[Log[c*(a + b*x^3)^p]/(d + e*x),x]

[Out]

-((p*Log[-((e*(a^(1/3) + b^(1/3)*x))/(b^(1/3)*d - a^(1/3)*e))]*Log[d + e*x])/e) - (p*Log[-((e*((-1)^(2/3)*a^(1
/3) + b^(1/3)*x))/(b^(1/3)*d - (-1)^(2/3)*a^(1/3)*e))]*Log[d + e*x])/e - (p*Log[((-1)^(1/3)*e*(a^(1/3) + (-1)^
(2/3)*b^(1/3)*x))/(b^(1/3)*d + (-1)^(1/3)*a^(1/3)*e)]*Log[d + e*x])/e + (Log[d + e*x]*Log[c*(a + b*x^3)^p])/e
- (p*PolyLog[2, (b^(1/3)*(d + e*x))/(b^(1/3)*d - a^(1/3)*e)])/e - (p*PolyLog[2, (b^(1/3)*(d + e*x))/(b^(1/3)*d
 + (-1)^(1/3)*a^(1/3)*e)])/e - (p*PolyLog[2, (b^(1/3)*(d + e*x))/(b^(1/3)*d - (-1)^(2/3)*a^(1/3)*e)])/e

Rule 2462

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[f +
 g*x]*(a + b*Log[c*(d + e*x^n)^p]))/g, x] - Dist[(b*e*n*p)/g, Int[(x^(n - 1)*Log[f + g*x])/(d + e*x^n), x], x]
 /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && RationalQ[n]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 2416

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2393

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + (c*e*x)/g])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{\log \left (c \left (a+b x^3\right )^p\right )}{d+e x} \, dx &=\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}-\frac{(3 b p) \int \frac{x^2 \log (d+e x)}{a+b x^3} \, dx}{e}\\ &=\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}-\frac{(3 b p) \int \left (\frac{\log (d+e x)}{3 b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac{\log (d+e x)}{3 b^{2/3} \left (-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac{\log (d+e x)}{3 b^{2/3} \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}\right ) \, dx}{e}\\ &=\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}-\frac{\left (\sqrt [3]{b} p\right ) \int \frac{\log (d+e x)}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{e}-\frac{\left (\sqrt [3]{b} p\right ) \int \frac{\log (d+e x)}{-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{e}-\frac{\left (\sqrt [3]{b} p\right ) \int \frac{\log (d+e x)}{(-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{e}\\ &=-\frac{p \log \left (-\frac{e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right ) \log (d+e x)}{e}-\frac{p \log \left (-\frac{e \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right ) \log (d+e x)}{e}-\frac{p \log \left (\frac{\sqrt [3]{-1} e \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{b} d+\sqrt [3]{-1} \sqrt [3]{a} e}\right ) \log (d+e x)}{e}+\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}+p \int \frac{\log \left (\frac{e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{-\sqrt [3]{b} d+\sqrt [3]{a} e}\right )}{d+e x} \, dx+p \int \frac{\log \left (\frac{e \left (-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{-\sqrt [3]{b} d-\sqrt [3]{-1} \sqrt [3]{a} e}\right )}{d+e x} \, dx+p \int \frac{\log \left (\frac{e \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{-\sqrt [3]{b} d+(-1)^{2/3} \sqrt [3]{a} e}\right )}{d+e x} \, dx\\ &=-\frac{p \log \left (-\frac{e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right ) \log (d+e x)}{e}-\frac{p \log \left (-\frac{e \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right ) \log (d+e x)}{e}-\frac{p \log \left (\frac{\sqrt [3]{-1} e \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{b} d+\sqrt [3]{-1} \sqrt [3]{a} e}\right ) \log (d+e x)}{e}+\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}+\frac{p \operatorname{Subst}\left (\int \frac{\log \left (1+\frac{\sqrt [3]{b} x}{-\sqrt [3]{b} d+\sqrt [3]{a} e}\right )}{x} \, dx,x,d+e x\right )}{e}+\frac{p \operatorname{Subst}\left (\int \frac{\log \left (1+\frac{\sqrt [3]{b} x}{-\sqrt [3]{b} d-\sqrt [3]{-1} \sqrt [3]{a} e}\right )}{x} \, dx,x,d+e x\right )}{e}+\frac{p \operatorname{Subst}\left (\int \frac{\log \left (1+\frac{\sqrt [3]{b} x}{-\sqrt [3]{b} d+(-1)^{2/3} \sqrt [3]{a} e}\right )}{x} \, dx,x,d+e x\right )}{e}\\ &=-\frac{p \log \left (-\frac{e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right ) \log (d+e x)}{e}-\frac{p \log \left (-\frac{e \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right ) \log (d+e x)}{e}-\frac{p \log \left (\frac{\sqrt [3]{-1} e \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{b} d+\sqrt [3]{-1} \sqrt [3]{a} e}\right ) \log (d+e x)}{e}+\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}-\frac{p \text{Li}_2\left (\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right )}{e}-\frac{p \text{Li}_2\left (\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d+\sqrt [3]{-1} \sqrt [3]{a} e}\right )}{e}-\frac{p \text{Li}_2\left (\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right )}{e}\\ \end{align*}

Mathematica [A]  time = 0.150079, size = 313, normalized size = 1.02 \[ -\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right )}{e}-\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{-1} \sqrt [3]{a} e+\sqrt [3]{b} d}\right )}{e}-\frac{p \text{PolyLog}\left (2,\frac{\sqrt [3]{b} (d+e x)}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right )}{e}+\frac{\log (d+e x) \log \left (c \left (a+b x^3\right )^p\right )}{e}-\frac{p \log (d+e x) \log \left (-\frac{e \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\sqrt [3]{b} d-\sqrt [3]{a} e}\right )}{e}-\frac{p \log (d+e x) \log \left (-\frac{(-1)^{2/3} e \left (\sqrt [3]{a}-\sqrt [3]{-1} \sqrt [3]{b} x\right )}{\sqrt [3]{b} d-(-1)^{2/3} \sqrt [3]{a} e}\right )}{e}-\frac{p \log (d+e x) \log \left (\frac{\sqrt [3]{-1} e \left (\sqrt [3]{a}+(-1)^{2/3} \sqrt [3]{b} x\right )}{\sqrt [3]{-1} \sqrt [3]{a} e+\sqrt [3]{b} d}\right )}{e} \]

Antiderivative was successfully verified.

[In]

Integrate[Log[c*(a + b*x^3)^p]/(d + e*x),x]

[Out]

-((p*Log[-((e*(a^(1/3) + b^(1/3)*x))/(b^(1/3)*d - a^(1/3)*e))]*Log[d + e*x])/e) - (p*Log[-(((-1)^(2/3)*e*(a^(1
/3) - (-1)^(1/3)*b^(1/3)*x))/(b^(1/3)*d - (-1)^(2/3)*a^(1/3)*e))]*Log[d + e*x])/e - (p*Log[((-1)^(1/3)*e*(a^(1
/3) + (-1)^(2/3)*b^(1/3)*x))/(b^(1/3)*d + (-1)^(1/3)*a^(1/3)*e)]*Log[d + e*x])/e + (Log[d + e*x]*Log[c*(a + b*
x^3)^p])/e - (p*PolyLog[2, (b^(1/3)*(d + e*x))/(b^(1/3)*d - a^(1/3)*e)])/e - (p*PolyLog[2, (b^(1/3)*(d + e*x))
/(b^(1/3)*d + (-1)^(1/3)*a^(1/3)*e)])/e - (p*PolyLog[2, (b^(1/3)*(d + e*x))/(b^(1/3)*d - (-1)^(2/3)*a^(1/3)*e)
])/e

________________________________________________________________________________________

Maple [C]  time = 0.589, size = 261, normalized size = 0.9 \begin{align*}{\frac{\ln \left ( ex+d \right ) \ln \left ( \left ( b{x}^{3}+a \right ) ^{p} \right ) }{e}}-{\frac{p}{e}\sum _{{\it \_R1}={\it RootOf} \left ( b{{\it \_Z}}^{3}-3\,bd{{\it \_Z}}^{2}+3\,b{d}^{2}{\it \_Z}+a{e}^{3}-b{d}^{3} \right ) }\ln \left ( ex+d \right ) \ln \left ({\frac{-ex+{\it \_R1}-d}{{\it \_R1}}} \right ) +{\it dilog} \left ({\frac{-ex+{\it \_R1}-d}{{\it \_R1}}} \right ) }+{\frac{{\frac{i}{2}}\ln \left ( ex+d \right ) \pi \,{\it csgn} \left ( i \left ( b{x}^{3}+a \right ) ^{p} \right ) \left ({\it csgn} \left ( ic \left ( b{x}^{3}+a \right ) ^{p} \right ) \right ) ^{2}}{e}}-{\frac{{\frac{i}{2}}\ln \left ( ex+d \right ) \pi \,{\it csgn} \left ( i \left ( b{x}^{3}+a \right ) ^{p} \right ){\it csgn} \left ( ic \left ( b{x}^{3}+a \right ) ^{p} \right ){\it csgn} \left ( ic \right ) }{e}}-{\frac{{\frac{i}{2}}\ln \left ( ex+d \right ) \pi \, \left ({\it csgn} \left ( ic \left ( b{x}^{3}+a \right ) ^{p} \right ) \right ) ^{3}}{e}}+{\frac{{\frac{i}{2}}\ln \left ( ex+d \right ) \pi \, \left ({\it csgn} \left ( ic \left ( b{x}^{3}+a \right ) ^{p} \right ) \right ) ^{2}{\it csgn} \left ( ic \right ) }{e}}+{\frac{\ln \left ( ex+d \right ) \ln \left ( c \right ) }{e}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(c*(b*x^3+a)^p)/(e*x+d),x)

[Out]

ln(e*x+d)/e*ln((b*x^3+a)^p)-p/e*sum(ln(e*x+d)*ln((-e*x+_R1-d)/_R1)+dilog((-e*x+_R1-d)/_R1),_R1=RootOf(_Z^3*b-3
*_Z^2*b*d+3*_Z*b*d^2+a*e^3-b*d^3))+1/2*I*ln(e*x+d)/e*Pi*csgn(I*(b*x^3+a)^p)*csgn(I*c*(b*x^3+a)^p)^2-1/2*I*ln(e
*x+d)/e*Pi*csgn(I*(b*x^3+a)^p)*csgn(I*c*(b*x^3+a)^p)*csgn(I*c)-1/2*I*ln(e*x+d)/e*Pi*csgn(I*c*(b*x^3+a)^p)^3+1/
2*I*ln(e*x+d)/e*Pi*csgn(I*c*(b*x^3+a)^p)^2*csgn(I*c)+ln(e*x+d)/e*ln(c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\log \left ({\left (b x^{3} + a\right )}^{p} c\right )}{e x + d}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^3+a)^p)/(e*x+d),x, algorithm="maxima")

[Out]

integrate(log((b*x^3 + a)^p*c)/(e*x + d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\log \left ({\left (b x^{3} + a\right )}^{p} c\right )}{e x + d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^3+a)^p)/(e*x+d),x, algorithm="fricas")

[Out]

integral(log((b*x^3 + a)^p*c)/(e*x + d), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(c*(b*x**3+a)**p)/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\log \left ({\left (b x^{3} + a\right )}^{p} c\right )}{e x + d}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x^3+a)^p)/(e*x+d),x, algorithm="giac")

[Out]

integrate(log((b*x^3 + a)^p*c)/(e*x + d), x)